Automatic pronunciation scoring of words and sentences independent from the non-native's first language
نویسندگان
چکیده
This paper describes an approach for automatic scoring of pronunciation quality for non-native speech. It is applicable regardless of the foreign language student’s mother tongue. Sentences and words are considered as scoring units. Additionally, mispronunciation and phoneme confusion statistics for the target language phoneme set are derived from human annotations and word level scoring results using a Markov chain model of mispronunciation detection. The proposed methods can be employed for building a part of the scoring module of a system for computer assisted pronunciation training (CAPT). Methods from pattern and speech recognition are applied to develop appropriate feature sets for sentence and word level scoring. Besides features well-known from and approved in previous research, e.g. phoneme accuracy, posterior score, duration score and recognition accuracy, Login: Register Abstract Article Figures/Tables References Purchase PDF (278 K) Article ToolboxArticle Figures/Tables References Purchase PDF (278 K) Article Toolbox Generating non-native pronunciation variants for lexico... Speech Communication Other Challenges: Non-native Speech, Dialects, Accents,... Multilingual Speech Processing On using units trained on foreign data for improved mul... Speech Communication Articulatory-feature-based confidence measures Computer Speech & Language Native-language sensitivities: evolution in the first y... Trends in Cognitive Sciences ScienceDirect Computer Speech & Language : Automatic pron... http://www.sciencedirect.com/science?_ob=ArticleURL&_udi... 2 von 3 25.01.2009 23:36 new features such as high-level phoneme confidence measures are identified. The proposed method is evaluated with native English speech, non-native English speech from German, French, Japanese, Indonesian and Chinese adults and non-native speech from German school children. The speech data are annotated with tags for mispronounced words and sentence level ratings by native English teachers. Experimental results show, that the reliability of automatic sentence level scoring by the system is almost as high as the average human evaluator. Furthermore, a good performance for detecting mispronounced words is achieved. In a validation experiment, it could also be verified, that the system gives the highest pronunciation quality scores to 90% of native speakers’ utterances. Automatic error diagnosis based on a automatically derived phoneme mispronunciation statistic showed reasonable results for five non-native speaker groups. The statistics can be exploited in order to provide the non-native feedback on mispronounced phonemes.
منابع مشابه
Automatic text-independent pronunciation scoring of foreign language student speech
SRI International is currently involved in the development of a new generation of software systems for automatic scoring of pronunciation as part of the Voice Interactive Language Training System (VILTS) project. This paper describes the goals of the VILTS system, the speech corpus, and the algorithm development. The automatic grading system uses SRI’s DecipherTM continuous speech recognition s...
متن کاملFirst Language Activation during Second Language Lexical Processing in a Sentential Context
Lexicalization-patterns, the way words are mapped onto concepts, differ from one language to another. This study investigated the influence of first language (L1) lexicalization patterns on the processing of second language (L2) words in sentential contexts by both less proficient and more proficient Persian learners of English. The focus was on cases where two different senses of a polys...
متن کاملبهبود خلاصه سازی خودکار متون فارسی با استفاده از روشهای پردازش زبان طبیعی و گراف شباهت
A significant amount of available information is stored in textual databases which contains a large collection of documents from different sources (such as news, articles, books, emails and web pages). The increasing visibility and importance of this class of information motivates us to work on having better automatic evaluation tools for textual resources. The automatic summarization of tex...
متن کاملProducing a Persian Text Tokenizer Corpus Focusing on Its Computational Linguistics Considerations
The main task of the tokenization is to divide the sentences of the text into its constituent units and remove punctuation marks (dots, commas, etc.). Each unit is a continuous lexical or grammatical writing chain that is an independent semantic unit. Tokenization occurs at the word level and the extracted units can be used as input to other components such as stemmer. The requirement to create...
متن کاملTerminology of Combining the Sentences of Farsi Language with the Viterbi Algorithm and BI-GRAM Labeling
This paper, based on the Viterbi algorithm, selects the most likely combination of different wording from a variety of scenarios. In this regard, the Bi-gram and Unigram tags of each word, based on the letters forming the words, as well as the bigram and unigram labels After the breakdown into the composition or moment of transition from the decomposition to the combination obtained from th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computer Speech & Language
دوره 23 شماره
صفحات -
تاریخ انتشار 2009